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The  quinolones  belong  to a family  of  synthetic  potent  broad-spectrum  antibiotics  and  particularly  active
against  gram-negative  organisms,  especially  Pseudomonas  aeruginosa.  A 3D-QSPkR  approach  has  been
used  to  obtain  the  quantitative  structure  pharmacokinetic  relationship  for a series  of  quinolone  drugs
using  SOMFA.  The  series  consisting  of 28 molecules  have  been  investigated  for their  pharmacokinetic
performance  using  biological  half life  (t1/2).  A  statistically  validated  robust  model  for  a  diverse  group
uinolone drugs
iological half life
D-QSPkR
OMFA-model

of  quinolone  drugs  having  flexibility  in  structure  and  pharmacokinetic  profile  (t1/2)  obtained  using
SOMFA  having  good  cross-validated  correlation  coefficient  r2

cv (0.6847),  non  cross-validated  correlation
coefficient  r2 values  (0.7310)  and  high  F-test  value  (33.9663).  Analysis  of  3D-QSPkR  models  through
electrostatic  and shape  grids  provide  useful  information  about  the  shape  and  electrostatic  potential  con-
tributions  on  t1/2. The  analysis  of  SOMFA  results  provide  an  insight  for the  generation  of  novel  molecular
architecture  of  quinolones  with  optimal  half  life  and  improved  biological  profile.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Quinolones comprise a group of synthetic substances pos-
essing antimicrobial activity against gram-negative organisms,
specially Pseudomonas aeruginosa.  The first quinolone to be
arketed was nalidixic acid. Nalidixic acid and Cinoxacin were clas-

ified as the first generation quinolones and are mainly used for
rinary tract infections. Other clinically used quinolones are nor-
oxacin, ciprofloxacin, ofloxacin, trovafloxacin, etc. Ciprofloxacin
nd Levofloxacin dominate the worldwide fluoroquinolone market.
ue to enhanced antimicrobial activity, the role of fluoro-
uinolones has been extended beyond the traditional indications
or quinolone antimicrobials in the treatment of urinary tract
nfections. Quinolone derivatives have effectively capitalized a
remendous role in a wider variety of infectious diseases including
kin and respiratory infections (Ambrose et al., 1997).The mech-
nism of action of quinolones involves inhibiting the action of
NA gyrase and topoisomerase IV and kill bacteria by binding to
hese enzyme–DNA complexes, thereby disrupting DNA replica-
ion (Levine et al., 1998). The major limitations of the quinolones
r other antimicrobials is due to increased administration of these

∗ Corresponding author. Tel.: +91 0172 2534107; fax: +91 0172 2543101.
E-mail addresses: vrsinha@pu.ac.in, sinha vr@rediffmail.com (V.R. Sinha).

378-5173/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2011.05.065
drugs which led to the development of resistance in bacteria via
various mechanisms such as alterations in target enzymes, bac-
terial cell permeability, and drug efflux (Ruiz, 2003). However,
because of their excellent safety and tolerability, they have become
popular alternatives to penicillins and cephalosporins in the treat-
ment of various infections. Thus, the major impetus nowadays is
search for the novel candidates having safety, low resistance and
good bioavailability profile which further depend on the pharma-
cokinetic parameters. The rapid and complete absorption of drugs
from the gastrointestinal tract and obtaining the peak serum con-
centrations obtained after oral administration close to intravenous
administration has been one of the prime considerations among
the researchers (Borcherding et al., 1996).

In a pharmaceutically driven drug discovery process, the
major aim of the clinicians to target the molecule at the selec-
tive site in order to get maximum therapeutic efficacy without
much adverse effects. However, with the increasing challenges
in the pharmaceutical research, it has been estimated that
the developmental cost of a new entity, starting from the
clinical trials to the final approval requires about 8.5 years
with a cost of $40 billion and only 21.5% of clinical success

rate (http://csdd.tufts.edu/reports/description/rd single issues,
accessed November 20, 2009) (TCSDD, 2008). Hence, prior to
developmental stages of the drug discovery process, it is imper-
ative to use suitable rational computational approaches such as

dx.doi.org/10.1016/j.ijpharm.2011.05.065
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:vrsinha@pu.ac.in
mailto:sinha_vr@rediffmail.com
http://csdd.tufts.edu/reports/description/rd_single_issues
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Table 1
Actual and predicted biological half lives of the quinolone drugs.

Drug Actual
biological pt1/2

Predictive
biological pt1/2

(at 1.0 Å)

Residual
biological pt1/2

Amifloxacin (1) −0.617 −0.442 0.175
Balofloxacin (2) −0.892 −0.897 −0.005
Cinoxacin (3) −0.255 −0.397 −0.142
Clinafloxacin (4) −0.752 −0.822 −0.070
Ciprofloxacin (5) −0.663 −0.718 −0.055
Difloxacin (6) −1.433 −1.243 0.190
Enoxacin (7) −0.792 −0.807 −0.015
Fleroxacin (8) −1.033 −0.921 0.112
Flosequinan (9) −0.161 −0.229 −0.068
Flumequin (10) −0.978 −0.714 0.264
Gatifloxacin (11) −0.873 −0.885 −0.012
Gemifloxacin (12) −0.823 −0.932 −0.109
Grepafloxacin (13) −0.716 −0.842 −0.126
Levofloxacin (14) −0.869 −0.729 0.140
Lomefloxacin (15) −0.803 −0.887 −0.084
Moxifloxacin (16) −1.072 −0.999 0.073
Nalidixic acid (17) −0.243 −0.462 −0.219
Norfloxacin (18) −0.726 −0.794 −0.068
Ofloxacin (19) −0.739 −0.838 −0.099
Oxolinic acid (20) −0.740 −0.483 0.257
Pefloxacin (21) −1.021 −0.990 0.031
Pipemidic acid (22) −0.362 −0.558 −0.196
Rosoxacin (23) −0.813 −0.579 0.234
Sitafloxacin (24) −0.663 −0.827 −0.164
Sparfloxacin (25) −1.301 −1.315 −0.014
Temafloxacin (26) −0.898 −1.124 −0.226
Tosufloxacin (27) −0.604 −0.639 −0.035
H. Goel et al. / International Journa

n silico QSPkR/QSAR models to shorten the time as well as the
recise prediction of the desirable properties required in a drug
andidate (Hutter, 2009).

The study and evaluation of the basic pharmacokinetic parame-
ers such as absorption, distribution, metabolism, and elimination
ADME) studies of the molecule in the particular class can help
n the assessment of clinical parameters. QSPkR study also act as
cientific tool to assess the early features of the pharmacokinetic
haracteristics of a drug molecule. Mostly quinolones exhibit a
arge volume of distribution and concentrate in tissues at levels
hat often exceed serum drug concentrations. Distribution of the
uinolones into respiratory tract tissues and fluids is of particu-

ar interest due its inhibitory activity against common respiratory
athogens.

Quantitative structure–property relationship (QSPkR)
pproaches represent one of the robust mathematical tools
o analyze the correlation between molecular properties and
harmacokinetic parameters. QSPkR studies enable pharmaceu-
ical scientist to alter the pharmacokinetic properties of a drug
ithout compromising its pharmacodynamic competency. The
ajor advantage of QSPkR studies lies in the fact that once such

 relationship is established with adequate statistical degree of
onfidence, it can be of a valuable assistance in the prediction
f the behaviour of new molecules even before they are actually
ynthesized. Several novel nonlinear machine learning methods
ave been applied for the prediction of pharmacodynamic and
DME properties. Recently, there have been a number of computer
rograms to correlate molecules in terms of molecular descriptors
nd pharmacokinetic parameters that are more meaningful to
harmaceutical scientists. Robinson et al. have developed such

 novel three dimensional quantitative structure activity rela-
ionship technique called self-organizing molecular field analysis
SOMFA) similar to both comparative molecular field analysis
CoMFA) and molecular similarity studies (Robinson et al., 1999;
ramer et al., 1988).

It is also a grid-based approach however no probe interaction
nergies are required to be calculated and it predicts intrinsic
olecular properties such as the molecular shape and electrostatic

otential, which are used to develop QSAR/QSPkR models (Zheng
nd Li, 2006). It avoids complex statistical tools and variable selec-
ion procedures favored by other methods. A successful QSPkR

odel generates statistically significant relationships between
hemical structure and pharmacokinetic properties. The underly-
ng assumption is that the variations of pharmacokinetic properties

ithin a series can be correlated with the changes in the mea-
ured or computed molecular features of the molecules. A validated
D-QSPkR model not only helps in better understanding of the
tructure–activity relationships of any class of molecules, but also
rovides researcher an insight at molecular level about the lead
olecules for further optimization. Thus, information obtained

rom 3D-QSPkR analysis provides important guidelines for drug
esign process.

A SOMFA 3D-QSPkR model could be based on any molecular
roperty; in the present study molecular shape and electrostatic
otential have been used. The inherent simplicity of this method
llows the possibility of aligning the molecules as an integral part of
he model derivation process and of aligning prediction molecules
o optimize their predicted activities or pharmacokinetic properties
Du et al., 2003).

The half-life of a drug in plasma or serum is a clinically
ignificant parameter frequently used for indicating the persis-
ence of the drug in its volume of distribution. Furthermore, for

esigning the new dosage regimen, it is related with duration
f clinical effects and frequency of dosing. Thus, clinical suit-
bility of a drug candidate can be implicated through in silico
pproaches instead of using costly, time consuming and ethically
Trovafloxacin (28) −0.892 −0.659 0.233

stringent in vivo protocols. The prediction of t1/2 using conven-
tional pharmacokinetic approaches involves exorbitant cost and
time-consuming protocols as compared to in silico procedures
of quantitative structure pharmacokinetic relationship (QSPkR)
(Duch et al., 2007).

A series of quinolone drugs consisting of 28 molecules have been
investigated in silico for their pharmacokinetic performance using
biological half life (t1/2). Furthermore, the compounds in this class
exhibit similar pharmacokinetic characteristics that include mech-
anism of action and degree of affinity with body tissues. Recently,
numerous works for the optimization of molecular architecture
using SOMFA (Aggarwal et al., 2010a,b; Thareja et al., 2010a,b,c)
have been reported from our research group. The prime objective
of the present study is to investigate the in silico QSPkR using SOMFA
on a quinolone class of drugs extensively employed as antimicro-
bials for the predictive assessment of t1/2.

2. Experimental

2.1. Data set and pharmacokinetic profile

A dataset of 28 drug molecules belonging to quinolone class of
drugs as broad spectrum antibiotics including first to fourth gen-
eration candidates were taken from the literature (Shargel et al.,
2005; Maryadele and O’Neil, 2006; Bruton et al., 2006; Cheng et al.,
2007; Hooper and Wolfson, 1993) and used for 3D-QSPkR study
(Thareja et al., 2010b).  Wide variation in structures and biological
half life (t1/2) of drug molecules qualify for the present study. The
negative logarithm of the measured biological half life (t1/2) as pt1/2
(log 1/t1/2 or actual activity) was used as dependent variable, thus
correlating the data linear to the free energy change (Sachan et al.,

2007). The general structure of the molecules has been presented
in Fig. 1 and their actual and predicted biological half life (t1/2) is
presented in Table 1.
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.2. Molecular Modeling

The three dimensional structures of the quinolone drugs were
onstructed with the Chemdraw Ultra 8.0 running on an Intel Core

 Duo CPU T5270@1.40GHZ/Microsoft Win  XP Home edition plat-
orm and were subjected to energy minimization using molecular
echanics (MM2). The minimization is continued until the root
ean square (RMS) gradient value reaches a value smaller than

.001 kcal/mol Å. The Hamiltonian approximations Austin model
 (AM1) method (Aggarwal et al., 2010a)  available in the MOPAC
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Fig. 1. Chemical structures
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module (Thareja et al., 2010a)  of Chem3D is adopted for re-
optimization until the root mean square (RMS) gradient attains a
value smaller than 0.001 kcal/mol Å. Unless otherwise indicated, all
parameters were kept default.

2.3. SOMFA 3D-QSPkR models
In the SOMFA study, a 40 Å × 40 Å × 40 Å grid originating at (−20,
−20, −20) with a resolution of 1 Å  was  generated around the aligned
molecules (Thareja et al., 2010c).  The best model resulted using 1 Å
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 of quinolone drugs.
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rid resolution under exploration has been depicted in Table 2. The
ultiple linear regression (MLR) algorithm was used in conjuga-

ion with leave one out (LOO) cross-validation to develop the final
odel. In this analysis, one compound was dropped in turn and a

able 2
ultiple linear regression analysis at 1.0 Å.

Parameter Resolution 1.0 Å

r2 0.7310
r2

cv (q2) 0.6847
F 33.9663
r2

se 0.1546
q2

se 0.1674
inued ).

model was  generated from the remaining molecules. This model
was  then used to predict the activity of the dropped compound.
This procedure was  repeated until all the molecules were predicted.
This MLR  analysis gave the optimum number of components that
was  used to generate the final models without cross-validation.
The result from a cross-validation analysis was  expressed as r2

cv
(q2) value, which is defined as

r2
cv = 1 − PRESS

∑
(Y − Ymean)2
where PRESS =
∑

(Y − Ypred)2.
The result from a cross-validation analysis was expressed as r2

cv
value, which can take up values in the range from 1, suggesting a
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important features (For interpretation of the references to color
in this text, the reader is referred to the web version of the article.):
high density of red points around the C-7 and C-3 of quinolone
skeleton indicating presence of electropositive groups favorable
ig. 2. Graph of actual vs. predicted t1/2 of all quinolone drugs from the best predic-
ive SOMFA model.

erfect model, to less than 0 where errors of prediction are greater
han the error from assigning each compound mean activity of the

odel (Golbraikh and Tropsha, 2002).
Fischer statistics (F-test) is the ratio between explained and

nexplained variance for a given number of degrees of freedom.
he larger the value of F, the greater the probability that the QSPkR
odels will be statistically significant (Kulkarni et al., 1999). Since

he final equations are not very useful to represent efficiently the
OMFA models, 3D master grid maps of the best models are dis-
layed by Grid-Visualizer program. These grids represent area in
pace where steric and electrostatic field interactions are respon-
ible for the observed variations in the t1/2.

. Results and discussion

In the present QSPkR study, SOMFA was employed with data
et composed of clinically used 28 quinolone drug molecules
hose biological half life are known to find out molecular fea-

ures responsible for optimal half life. Statistical results of SOMFA
odels obtained by MLR  analysis, i.e. cross-validated r2

cv, non cross-
alidated r2, F-test value serves as a quantitative measure of the
redictability of the SOMFA.

During SOMFA studies, grid spacing of 1.0 Å was  investigated.
he best SOMFA model obtained showed good cross-validated cor-
elation coefficient r2

cv (0.6847), non cross-validated correlation
oefficient r2 values (0.7310), high F-test value (33.9663) with sat-
sfied statistical correlation and predictive ability. The actual and
redicted biological half lives of the molecules are reported in

able 1 using best Model A. Figs. 2 and 3 show a good linear correla-
ion and moderate difference between actual and predicted values
f dataset molecules.

Fig. 3. Histogram of SOMFA residual t1/2 of all quinolone drugs.
Fig. 4. Electrostatic grid showing drug Difloxacin (6) having maximum biological
half life in the background at 1.0 Å resolution.

SOMFA calculation for both shape and electrostatic poten-
tials were performed which have been presented as master grids
(Figs. 4 and 5) using resolution of grid at 1.0 Å. The master grid
maps derived from the best model were used to display the contri-
bution of shape and electrostatic potential. The master grid maps
gave a direct visual indication regarding structural features respon-
sible to differentiate the biological half life of drugs in the data set
under study. The master grid also offered an interpretation as to
design and optimize novel molecules with much improved biolog-
ical half life. Each master grid map  was colored in two different
colors for favorable and unfavorable effects. In other words, the
electrostatic features were red (more positive charge increases t1/2
or more negative charge decreases t1/2) and blue (more negative
charge increases t1/2 or more positive charge decreases t1/2), and
the shape feature are red (more steric bulk increases t1/2) and blue
(more steric bulk decreases t1/2), respectively (For interpretation of
the references to color in this text, the reader is referred to the web
version of the article.) (Fig. 6).

The SOMFA electrostatic potential map  (Fig. 4) shows some
Fig. 5. Shape grid showing Difloxacin (6) having maximum biological half life in the
background at 1.0 Å resolution.
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Fig. 6. Color code repr

or optimal biological half life while few blue points around N-
 indicating the presence of electronegative groups favorable for

mproved biological half life. Meanwhile in SOMFA shape poten-
ial map  (Fig. 5), high density of blue points around N-1 and C-7
f quinolone molecules suggesting unfavorable steric interaction
hile around C-8 showed favorable steric interactions for improv-

ng biological half life (For interpretation of the references to color
n this text, the reader is referred to the web version of the arti-
le.). These features are essential while designing new quinolone
nalogues in order to have optimal biological half life.

. Conclusion

A statistically validated robust SOMFA 3D-QSPkR models for a
iverse set of quinolone drugs having flexibility in structure and
harmacokinetic profile capable of predicting the half life of new
hemical moieties have been developed. The master grid obtained
rom the present SOMFA models indicated electrostatic and shape
otential contributions on biological t1/2. These features can be
apped back onto the structural features relating to trends in half

ife of the quinolones. Shape and electrostatic potential contribu-
ions calculations will be helpful in designing of novel quinolones
ith optimal half life period which will improve biological
rofile.
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